SEMESTER-IV

COURSE 3: RING THEORY

Theory

Credits: 4

5 hrs/week

Course Outcomes

After successful completion of this course, the student will be able to

- 1. acquire the basic knowledge of rings, fields and integral domains
- 2. get the knowledge of subrings and ideals
- 3. construct composition tables for finite quotient rings
- 4. study the homomorphisms and isomorphisms with applications.
- 5. get the idea of division algorithm of polynomials over a field.

Course Content

Unit – 1

Ringsand Fields

Definition of a ring and Examples –Basic properties – Boolean rings - Fields – Divisors of 0 and Cancellation Laws– Integral Domains – Division ring - The Characteristic of a Ring, Integral domain and Field – NonCommutative Rings - Matrices over a field – The Quaternion ring.

Unit – 2

Subrings and Ideals

Definition and examples of Subrings – Necessary and sufficient conditions for a subset to be a subring – Algebra of Subrings – Centre of a ring – left, right and two sided ideals – Algebra of ideals – Equivalence of a field and a commutative ring without proper ideals

Unit III: Principal ideals and Quotient rings

Definition of a Principal ideal ring(Domain) – Every field is a PID – The ring of integers is a PID – Example of a ring which is not a PIR – Cosets – Algebra of cosets – Quotient rings – Construction of composition tables for finite quotient rings of the ring Z of integers and the ring Z_n of integers modulo n.

Unit – 4

Homomorphism of Rings

Homomorphism of Rings – Definition and Elementary properties – Kernel of a homomorphism – Isomorphism – Fundamental theorems of homomorphism of rings – Maximal and prime Ideals – Prime Fields

Unit – 5

Rings of Polynomials

Polynomials in an indeterminate – The Evaluation morphism -- The Division Algorithm in F[x] – Irreducible Polynomials – Ideal Structure in F[x] – Uniqueness of Factorization F[x].

Activities

Seminar/ Quiz/ Assignments/ Applications of ring theory concepts to Real life Problem /Problem Solving Sessions.

Text book

Modern Algebra by A.R. Vasishta and A.K. Vasishta, Krishna Prakashan Media Pvt. Ltd.

Reference books

1. A First Course in Abstract Algebra by John. B. Farleigh, Narosa Publishing House.

2. Linear Algebra by Stephen. H. Friedberg and Others, Pearson Education India

SEMESTER-IV

COURSE 4: INTRODUCTION TO REAL ANALYSIS

Theory

Credits: 4

5 hrs/week

CourseOutcomes

 $\label{eq:lagrange} After successful completion of this course, the student will be able to$

- 1. get clearideaabouttherealnumbersandrealvaluedfunctions.
- 2. obtaintheskillsofanalysingtheconceptsandapplyingappropriatemethodsfortesting convergence of a sequence/ series.
- 3. testthecontinuity and differentiability and Riemannintegration of a function.
- 4. knowthegeometricalinterpretationofmeanvalue theorems.
- 5. know about the fundamental theorem of integral calculus

Course Contents

Unit – 1

REALNUMBERS, REAL SEQUENCES

The algebraic and order properties of R - Absolute value and Real line - Completeness property of R - Applications of supremum property - intervals. (**No question is to be set from this portion**) Sequences and their limits -Range and Boundedness of Sequences - Limit of a sequence and Convergent sequence -The Cauchy's criterion - properly divergent sequences - Monotone sequences - Necessary and Sufficient condition for Convergence of Monotone Sequence - Limit Point of Sequence -Subsequencesand the Bolzano-weierstrass theorem – Cauchy Sequences – Cauchy's general principle of convergence.

Unit – 2

INFINITIE SERIES

Introductiontoseries -convergenceofseries -Cauchy'sgeneralprincipleof convergencefor series tests for convergence of series - Series of non-negative terms - P-test - Cauchy'snth roottest -D'-Alembert'sTest-AlternatingSeries-Leibnitz Test.

Unit –3

LIMIT & CONTINUITY

Real valued Functions - Boundedness of a function - Limits of functions - Some extensions of the limit concept - Infinite Limits - Limits at infinity (**No question is to be set from this portion**).Continuous functions - Combinations of continuous functions - Continuous Functions on intervals - uniform continuity.

Unit – 4

DIFFERENTIATION ANDMEANVALUETHEORMS

The derivability of a function at a point and and on an interval - Derivability and continuity of a function -MeanvalueTheorems -Rolle'sTheorem,Lagrange's Theorem, Cauchy's Mean value Theorem

Unit - 5

RIEMANNINTEGRATION

Riemann Integral - Riemann integral functions - Darboux theorem -Necessary and sufficientcondition for R integrability - Properties of integrable functions - Fundamental theorem of integral calculus - integral as the limit of a sum - Mean value Theorems.

Activities

Seminar/ Quiz/ Assignments/ Applications of Real Analysis to Real life Problem /Problem Solving Sessions.

TextBook

An Introduction to Real Analysis by Robert G.Bartle and Donlad R. Sherbert, John Wiley and sonsPvt. Ltd

ReferenceBooks

- 1. ElementsofRealAnalysis by ShanthiNarayan andDr.M.D.Raisinghania, S. Chand & Company Pvt. Ltd., New Delhi.
- 2. Principles of Mathematical Analysis by Walter Rudin, McGraw-Hill Ltd.
